
TECHNICAL NOTE

Influence of particle shape on small-strain damping ratio of dry sands

M. PAYAN�, K. SENETAKIS�, A. KHOSHGHALB� and N. KHALILI�

This study reports on the significance of particle shape on the small-strain damping ratio of dry sands in
shear (Ds,min) through a comprehensive set of torsional resonant column tests. Sands with a variety of
grain shapes prepared at variable initial densities are studied. The samples are subjected to torsional
resonant column tests under isotropic confining pressures (p′) ranging from 50 to 800 kPa. Small-strain
damping ratios are derived based on the free-vibration decay mode of the samples and the results are
compared with the half-power bandwidth method. The effects of grain size distribution, particle shape
and effective confining stress on Ds,min are thoroughly discussed, and a new model for the prediction of
small-strain damping ratio of dry sand is proposed.
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INTRODUCTION
Damping ratio in shear (Ds) is an important soil property for
the geophysical characterisation of sediments, seismic design
of civil engineering facilities and study of energy dissipation in
geomaterials (Richart et al., 1970; Cascante & Santamarina,
1996; Ishihara, 1996). At small strains, damping ratio reaches a
minimum value, denoted byDs,min.Mechanisms of energy loss
at small strains are not well understood in the literature.
Santamarina & Cascante (1996) reported that processes other
than frictional losses are involved in the dissipation of energyat
small strains. Menq (2003) and Senetakis et al. (2012) related
Ds,min to the mean effective confining pressure and gradation
characteristics of the soil. Senetakis et al. (2013) discussed the
influence of particle morphology on Ds,min and attributed it
to the shape descriptors of the particles. The effect of particle
shape on small-strain dynamic properties has also been em-
phasised by Santamarina & Cascante (1998), Cho et al. (2006)
and Payan et al. (2016). Nevertheless, no systematic investi-
gation of the effect of particle shape on the damping properties
of sands has to date been reported in the literature.
The main objective of this note is to report on the results of

an experimental study on the effect of particle shape on the
small-strain damping ratio of dry sands. For this purpose,
samples of sands with a variety of grain shapes are examined
in a resonant column apparatus in torsional mode of vibrat-
ion to determine their small-strain damping ratio using two
different approaches: free-vibration decay and half-power
bandwidth methods. The analyses of the results are incor-
porated into a new expression for the prediction of small-
strain damping ratio of sands in shear, taking into account the
effects of particle shape as well as grain size characteristics.

TEST MATERIALS AND METHODS
Eleven sands with various gradations and particle shapes

were tested in this study. The grading curves of the sands are
presented in Fig. 1. The grain size characteristics as well as
particle shape descriptors are given in Table 1. Blue and
uniform Sydney sands were used for independent verification

purposes and were not included in the model development.
All test soils were classified as SP according to the Unified
Soil Classification System (USCS) with a coefficient of
curvature (Cc) close to unity. Dry samples were prepared to
target void ratios in a metal split mould placed directly on the
base pedestal of a resonant column apparatus (RCA) with
fixed-free ends. For the data analysis, 19 samples were
prepared and tested in the RCA under isotropic confining
pressures, p′, ranging from 50 to 800 kPa. Samples’ initial
void ratios, eo, are given in Table 1. All the specimens were
tested in a dry state in the torsional mode of vibration. The
sequence of increasing p′ adopted in the tests was 50, 100,
200, 400, 600 and 800 kPa.
The particle shape descriptors in Table 1 were quantified

visually in an optical microscope adopting a widely used
empirical chart proposed by Krumbein & Sloss (1963)
(Fig. 2). For a given sand, 30 particles were randomly
selected and two shape descriptors, namely roundness, R,
and sphericity, S, were quantified. The roundness is related to
the local surface features of the sand particles, and is defined
as the ratio of the average radius of the surface features to the
radius of the largest sphere inscribed in the sand particle.
Sphericity is an indication of the general shape of sand
particles and is quantified as the ratio of the radius of the
largest inscribed sphere in the particle to the smallest
circumscribed sphere to the particle. The definitions of R
and S are shown schematically in Fig. 2. Only the mean
values of R and S denoted by R (mean) and S (mean) are
presented in Table 1. The regularity, ρ, was calculated as the
algebraic mean of the roundness and sphericity, that is,
ρ=0·5� (R+S). Regularity was introduced by Cho et al.
(2006) to simultaneously account for the effects of both
roundness and sphericity in the mechanical behaviour of
geomaterials. The mean value of regularity for each sample,
denoted by ρ (mean), was used in the analyses in this study.
The values of small-strain damping ratio in shear were ob-

tained using the free-vibration decay (FVD) method (ASTM,
2015) as well as the half-power bandwidth (HPB) method. In
the FVD method, three successive cycles during free vibration
of the samples were adopted for small-strain damping ratio
calculations, as suggested by Stokoe et al. (1999). A typical
example of the experimental results along with the calculations
to obtain the small-strain damping ratio using FVD and HPB
methods are given in Figs 3 and 4, respectively. Note that the
measurements of small-strain damping ratio in this study
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Fig. 1. Particle size distribution curves of the tested sands

Table 1. Different properties of the soils tested in the study

Laboratory material (sand) Grading Particle shape descriptors* eo†

d50‡: mm Cu‡ R (mean) S (mean) ρ (mean)

Sydney 0·31 1·95 0·61 0·76 0·69 0·66, 0·70, 0·75, 0·80, 0·85
Bricky 0·47 2·19 0·48 0·71 0·60 0·75
White (Blue circle) 0·24 1·69 0·71 0·76 0·74 0·75
Newcastle 0·33 1·94 0·64 0·73 0·69 0·75
Nepean (River) 0·59 4·15 0·55 0·77 0·66 0·75, 0·80
Uniform Sydney 0·36 1·18 0·61 0·76 0·69 0·75, 0·85
Blue 1·88 4·11 0·24 0·51 0·38 0·75
Uniform Blue 0·69 1·99 0·24 0·51 0·38 0·75, 0·80, 0·85
50% uniform bricky, 50% uniform Blue 0·54 1·96 0·36 0·61 0·49 0·75, 0·85
70% uniform bricky, 30% uniform Blue 0·49 2·01 0·41 0·65 0·53 0·75, 0·85
30% uniform bricky, 70% uniform Blue 0·59 1·99 0·31 0·57 0·44 0·75, 0·85

*Obtained according to the modified version of particle shape characterisation chart developed by Cho et al. (2006).
†eo, initial void ratio.
‡d50, mean grain size; Cu = d60/d10.
R, roundness; S, sphericity; ρ, regularity.
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Fig. 2. Particle shape characterisation chart (Krumbein & Sloss, 1963; Cho et al., 2006)
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corresponded to shear strain amplitudes less than 10�3%
and thus the behaviour falls within the linear-elastic range
(Oztoprak & Bolton, 2013). Comparisons between the results
from FVD and HPB methods were conducted for all the tests
and the results are illustrated in Fig. 5.Within the scatterof the
data, the two methods provide reasonably similar small-strain

damping ratio values, which is in agreement with the recent
work by Senetakis et al. (2015). Small-strain damping ratios
obtained using the FVD method were used for the model
development and verification in this study.

RESULTS AND DISCUSSION
Typical test results in terms of the variation of small-strain

damping ratio, Ds,min, plotted against the effective confining
pressure, p′, normalised with respect to the atmospheric
pressure, pa, for different particle shapes, but similar initial
void ratios, are presented in Fig. 6. As previously observed by
Menq (2003) and Senetakis et al. (2012, 2013), among
others, the results show Ds,min decreases with increasing
isotropic confining pressure. However, more importantly,
they show a strong dependency of Ds,min on the shape
descriptor ρ, particularly at the lower ratios of p′/pa.
In order to isolate more clearly the influence of particle

shape on small-strain damping ratio, the effects of gradation
must be excluded from the observed trends in Fig. 6. To this
end, the authors note that the small-strain damping ratio is not
influenced by the soil density or the void ratio (Santamarina &
Cascante, 1998), and thatDs,min is related to p′/pa in the form of
a power law as (Menq, 2003; Senetakis et al., 2012, 2013)

Ds;min ¼ C � p′
pa
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whereC and κ are material parameters, which a priori may be
considered functions of gradation and particle shape of the
soil. However, based on the work of Menq (2003), and
Senetakis et al. (2012, 2013), exponent κ is not influenced by
gradation. Therefore, it is assumed in this work that κ is only

a function of particle shape, but C is affected by both grain
size characteristics and particle shape as

C ¼ C1ðgrain size characteristicsÞ
� C2ðparticle shapeÞ ð2Þ
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in which C1 captures the effect of gradation and C2 is a
function of particle shape. Menq (2003) proposed the
following expression for C1

C1 ¼ 0�55� C0�1
u � d�0�3

50 ð3Þ
where Cu and d50 are the coefficient of uniformity and the
mean grain size (in mm), respectively. Adopting equation (1),

parameters C and κ can be obtained for each test soil from
the best fits to the experimental data shown in Fig. 6. C2 can
then be extracted from C using equations (2) and (3).
Variations of C2 and κ for the test soils against the shape

descriptors R, S and ρ are shown in Figs 7 and 8. For both
parameters, within the scatter of data, the systematic effect
of particle shape can be observed. Linear best fits to the
experimental data (using the minimum least-square error
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method) along with the corresponding coefficients of
correlation (r2) are also depicted in Figs 7 and 8. As can be
seen, the absolute value of exponent κ decreases with an
increase in regularity. This observation is in quantitative
agreement with the work by Senetakis et al. (2012) on dry
granular soils, implying that the effect of confining pressure
on Ds,min becomes less prominent for sands with increasing
value of regularity, ρ. Similarly, parameter C2 decreases as
regularity increases, an aspect which has been neglected in
the previous studies of small-strain damping ratio.

A NEW MODEL OF Ds,min INCLUDING PARTICLE
SHAPE

Considering the similar effects of S and R on C2 and κ
(Figs 7 and 8), regularity, ρ, is deemed to be an effective
parameter to incorporate the effect of particle shape on
small-strain damping ratio in this study. Thus, based on the
best fits in Figs 7(c) and 8(c), and equations (1)–(3), an
expression for small-strain damping ratio of sands including
the effects of particle shape and gradation may be proposed
as follows

Ds;min ¼ 0�55� C0�1
u � d�0�3

50

� �� �2�06ρþ 2�43ð Þ

� p′
pa

� �0�72ρ�0�86 ð4Þ

To explore the validity of equation (4), measured against
predicted values of Ds,min are plotted in Fig. 9 for three
independent sets of tests: uniform Sydney sand with two
initial void ratios of 0·75 and 0·85, and Blue sand with the
initial void ratio of 0·75. Also presented in Fig. 9 are the
damping ratio data reported by Senetakis et al. (2012)
plotted against the predicted values from equation (4). For
the data by Senetakis et al. (2012), regularity (ρ) values of 0·5
and 0·7 were reported for crushed sand and river sand,
respectively. Considering the difficulties in measuring
damping ratio at small strains, and the extensive scatter in
the data that is reported in the literature, a very good
comparison between measured and predicted values ofDs,min
is obtained for all practical purposes.

CONCLUDING REMARKS
A set of resonant column tests has been performed with a

focus on the determination of the small-strain damping ratio
of dry sands using two different approaches: free-vibration
decay and half-power bandwidth methods. Using systematic
normalisations, the effect of particle shape is isolated and
incorporated into the development of a new expression for
determination of small-strain damping ratio for sands subject
to isotropic confining stress. Particle shape is expressed by
means of regularity, which is the average of two particle shape
descriptors: the roundness and the sphericity. Comparisons
of predicted values of small-strain damping ratio based on
the new model and the data reported in this study, and also in
the literature, demonstrate a satisfactory performance of the
new model.

NOTATION
C material parameter related to small-strain damping

ratio
Cc coefficient of curvature
Cu coefficient of uniformity
C1 material parameter describing the contribution

function of grain size characteristics in small-strain
damping ratio of sand

C2 material parameter describing the contribution
function of particle shape in small-strain damping
ratio of sand

Dequipment damping of equipment
Ds damping ratio in shear

Ds,min small-strain damping ratio in shear
Ds,min(specimen) small-strain damping ratio in shear of specimen
Ds,min,measured measured small-strain damping ratio in shear
Ds,min,predicted predicted small-strain damping ratio in shear

d10 grain diameter at 10% passing
d50 mean grain size of sand
d60 grain diameter at 60% passing
eo initial void ratio
fn natural resonant frequency

f1, f2 frequencies corresponding to 0·707 times the
maximum shear strain amplitude of vibration

N number of inscribed spheres in sand particle
p′ isotropic confining pressure
pa atmospheric pressure
R roundness

rmax-in radius of largest sphere inscribed in sand particle
rmin-cir radius of smallest sphere circumscribed to sand

particle
r1, r2,…, ri radius of spheres inscribed in sand particle

r2 coefficient of correlation
S sphericity

Zmax maximum shear strain amplitude of vibration
δ logarithmic decrement of free vibration
κ material parameter related to small-strain damping

ratio as a function of particle shape
ρ regularity
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